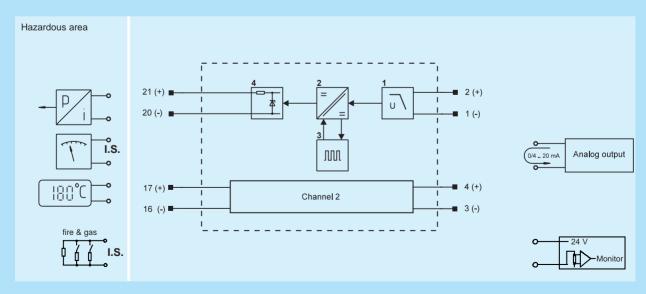
I.S. Isolators

I.S. Isolators (Modules) mA Isolating Repeater Loop Powered Type 9111/63


- Intrinsically safe output [EEx ia] IIC
- 2 channels
- Galvanic isolation between input and output
- Loop powered
- Extremely low internal resistance
- HART signal transmission, bidirectional
- EMC tested, CE marking

Basic function: analog output, mA, 2 channels.

The mA isolating repeaters are used for intrinsically safe operation of control valves, i/p transmitters, analog and digital displays etc.

9111/63 is also suitable for fire & gas detectors.

Selection table	
Version	Ordering code
mA isolating repeater	9111 / 63 - 11 - 00

The isolating repeater		9111/03-11-00
Safety data for output		
Certifications	BVS (Europe, CENELEC), CSA (Canada) EVPU (Slovakia), FM (USA)	, SEV (Switzerland), FTZU (Czech Republic),
Marking Classification	[EEx ia] IIC/IIB according to CENELEC associated electrical apparatus	

Safe maximum values (CENELEC)

Further information and combinations of values, see certifications

Technical data

Signal transmission

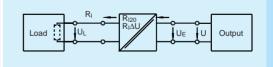
The current (I_E) fed to the analog input is transferred linearly to the I.S. output (I_A). In addition a HART signal is transferred bidirectionally.

 $\begin{array}{lll} \text{Current range (specified accuracy)} & \text{I}_{A} = \text{I}_{E} & 0..20 \text{ mA} \\ \text{Internal resistance (for I}_{A} \leq 20 \text{ mA}) & \text{R}_{i20} \leq & 380 \ \Omega \\ \text{Response time (10 .. 90\%)} & \leq & 20 \text{ ms} \\ \end{array}$

 $\label{eq:continuit} \mbox{Open-circuit} \\ \mbox{Input behavior on open-circuit} & \mbox{I}_{\mbox{E}} \leq & 1.0 \ \mbox{mA} \\ \mbox{}$

Error limits

in % of the measuring range Linearity error for R_L = 0 Ω , 23 °C Internal consumption $\leq 0.15 \%$ Temperature effect $\leq \pm 0.05 \% / 10 \text{K}$


Engineering

Calculation of input voltage U_E: (see also Technical data)

In range I = 0 .. 22 mA: $U \ge U_E \ge U_L + (R_{i20} + R_i) \cdot I$

 $\begin{array}{l} \text{In range 22 mA} < I \leq I_m; \\ U \geq \underline{U_E} \geq U_L + \Delta U + \left(R_i {+} R_I\right) \cdot I \end{array}$

The calculated value of U_E has to be smaller than the value $U_{E,eff}$ (internal limitation)!

We reserve the right to make alterations to the technical data, weights, dimensions, designs and products available without notice. The illustrations cannot be considered binding.

